Sink

Create Function

create_sink(net, junction, mdot_kg_per_s, scaling=1.0, name=None, index=None, in_service=True, type='sink', **kwargs)

Adds one sink in table net[“sink”].

Parameters
  • net (pandapipesNet) – The net for which this sink should be created

  • junction (int) – The index of the junction to which the sink is connected

  • mdot_kg_per_s (float, default None) – The required mass flow

  • scaling (float, default 1) – An optional scaling factor to be set customly

  • name (str, default None) – A name tag for this sink

  • index (int, default None) – Force a specified ID if it is available. If None, the index one higher than the highest already existing index is selected.

  • in_service (bool, default True) – True for in service, false for out of service

  • type (str, default None) – Type variable to classify the sink

  • kwargs – Additional keyword arguments will be added as further columns to the net[“sink”] table

Returns

index - The unique ID of the created element

Return type

int

Example
>>> new_sink_id = create_sink(net, junction=2, mdot_kg_per_s=0.1)

Component Table Data

net.sink

Parameter

Datatype

Value Range

Explanation

name

string

Name of the sink

junction

integer

Index of connected junction

mdot_kg_per_s

float

\(\leq 0\)

Drawn mass flow [kg/s]

scaling *

float

\(\geq 0\)

Scaling factor to adapt the drawn mass flow

in_service*

boolean

True / False

Specifies if the sink is in service.

type

string

Component type

Physical Model

A sink draws a specified mass flow from the connected junction. Note that positive mass flow values correspond to flows leaving the system.

Sinks are typically used to model loads in hydraulic systems. Please note that sinks cannot be used to model loads for the pandapipes heat mode. In this case, to model a heat flow drawn by a consumer, the heat exchanger component can be used.

Result Table Data

net.res_sink

Parameter

Datatype

Explanation

mdot_kg_per_s

float

Drawn mass flow [kg/s]